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Abstract An overview of recent advances in the develop-
ment of methods designed to calculate rate constants for
chemical reactions obeying mass action kinetic equations in
condensed phases is presented. A general framework address-
ing mixed quantum-classical systems is elaborated that en-
ables quantum features such as tunneling effects, zero-point
vibrations, dynamic quantum coherence, and non-adiabatic
effects to be calculated. An efficient Monte Carlo sampling
method for performing ab-initio calculations of rate con-
stants and isotope effects in chemical processes in condensed
phases is outlined, and the connection of isotope effects to
reaction mechanism is explored.

1 Introduction
1.1 Phenomenology

In many situations of physical interest the dynamics of chem-
ical systems is well-described in terms of simple differential
equations that specify how coarse-grained quantities such as
the mean concentrations of chemical species evolve in time.
For example, in a general reaction scheme among »n chemical
species X; of the form

kg
VX i+ X, =0 X+ D, X, ()

kr

where v; and v; are stoichiometric coefficients for the reactant
and product specie i, respectively. Such a system of equations
is characterized by forward and reverse rate constants k ; and
k, that appear in the mass action rate law for the average
numbers (or concentrations) of a chemical species N; (),
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where J is known as the reaction rate [1]. Equation (2) can
be used to define a progress variable x (#) which monitors the
extent of reaction

dy (1) _, dN; (1)
J=""= -1 3

o (vi — Vi) ” 3)

that may be integrated to obtain the explicit time dependence

of the progress variable and thereby the deviations of all spe-

cies concentrations from their equilibrium values. For dilute

systems, it is often observed that the progress variable obeys
the simple rate equation

dx (1)
dr
where the overall rate constant is given by [2]

= —kx (), “

n

n
=30 | TT0RY
j=1 i=1 J
N 7
T 3]
i=1

J

Equation (4) may be integrated to yield an equation for the
time evolution of the progress variable

)((t)—X(O):—/0 dr k x(t — 7). &)

1.2 Theoretical framework for calculations of rate constants

To derive the mass action rate law and obtain a microscopic
expression for the rate constant k£ in Eq. (4), one starts from the
Heisenberg equation of motion for ¥ and extracts the long
time evolution proportional to the slow variables of the system
using projection operator techniques [2—4]. In the simplest
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approximation, one neglects the coupling of slow reactive
modes and other slow degrees of the system such as hydro-
dynamic modes. Such approximations are reasonable pro-
vided reaction and collective diffusion of chemical species
are relatively uncorrelated. From this approach, one obtains
a microscopic expression corresponding to Eq. (5) [2]
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In Eq. (8), i £ represents the full quantum Liouville operator
and Q is a projection operator [3] that projects dynamical
variables onto the subspace orthogonal to the slow variables
and the Kubo transformed correlation function is denoted

as [5]
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where p, is the equilibrium density matrix for a system with
Hamiltonian H. _

Since the time dependence of k(t;) arises through the
projected Liouville operator i OL which is orthogonal to all
slow variables of the system, one expects k(z) to vanish on
short timescales provided there is a clear separation between
microscopic times ¢ ~ ty;. and the long times characteriz-
ing reactive events (and other slow motion) 7. One therefore
expects K (T) to reach some constant value at an intermedi-
ate time t* with 7, << T* « t,. Since the progress variable
evolves on the slow reactive time scale ¢,, one sees that Eq. (6)
can be written as

dy (1) __ </r d,/}@)) x(@) + O@n/t),
dr 0

thereby yielding an expression for the overall rate constant
k~ K(t"). )

Unfortunately, direct calculation of K (t*) is problematic
due to the projection of the dynamics orthogonal to the slow
modes of the system, i.e. the presence of the projection oper-
ator Q in Eq. (8). In practice, one can analyze the effect of
the projection operator on the dynamics and show that, in the
case in which there is a clear separation of time scale between
reactive and other slow modes and the microscopic motions
of the system, in fact at intermediate time scales ¢t ~ 7%,

(10)

the difference between K () and the corresponding quantity
calculated using the unprojected dynamics,

K@) = (x0,iL%) (%, %), (11)

is neglible [2,6] even though the long time dynamics of K (1)
and K (¢) are quite different. This result was also obtained
by Yamamoto [7]. Thus the calculation of the rate constant
entails performing the full quantum evolution of a suitably-
defined progress variable x (¢) up to the intermediate time
scale t* and calculating the correlation function K (t*) given
in Eq. (11). Typically, one monitors the value of K(¢) un-
til one sees a “plateau” or steady value indicating that the
appropriate time scale has been reached. If no steady value is
observed, it is likely that no clear separation of time scale be-
tween reactive events and the microscopic motion exists, and
mass action kinetics is not likely to be an accurate description
of the chemical kinetics.

2 Mixed quantum - classical systems

As is clear from the previous section, explicit calculation of
the rate constant for a chemical process involves calculating
the quantum evolution of operators such as x (¢) up to inter-
mediate time scales so that the corresponding Kubo trans-
formed equilibrium correlation function in Eq. (11) may be
evaluated. This task is effectively impossible with the current
computational technology for all but the simplest systems.
For many complex chemical systems, one might hope that
the quantum nature of the system is relatively unimportant at
high temperatures and for heavy degrees of freedom so that
the classical limit of Eq. (11) may be utilized. Unfortunately,
in many problems of chemical interest, quantum effects do
play an important role and make a significant contribution to
the reactive process, quantitatively if not also qualitatively.
Nonetheless, it is frequently true that the quantum behavior
of the majority of the system is unimportant, suggesting the
simplification of dividing the total system into interacting
quantum and classical components.

A number of procedures have been proposed [8-35] for
performing molecular dynamics simulations of mixed quan-
tum-classical systems in which quantum transitions are cou-
pled to classical evolution. The coupling between quantum
and classical subsystems is particularly important in many
chemical systems containing hydrogen atoms where the nu-
clear motion evolves on multiple energy surfaces. In this re-
view we focus on the approach in which the evolution of the
mixed quantum-classical system is described by a quantum-
classical Liouville equation [8,20,37-42]. In such a method
one first takes the proper quantum-classical limit of the quan-
tum correlation function in Eq. (11). Such a procedure [35]
can be carried out by perturbatively expanding the full quan-
tum Liouville or Heisenberg equations of motion in a small
parameter characterizing the mass ratio of light (quantum)
and heavy (classical) degrees of freedom [8].

Consider a general quantum system consisting of n quan-
tum particles of mass m and N particles of mass M with a
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Hamiltonian of the form

~  Pr Pt .
H=—+-—+V@g 0), 12
ot o, TVEQ (12)

where P, D, Q, and g are vectors of momentum and posi-
tion operators of the classical and quantum degrees of free-
dom. The total potential energy 1% may be written as Vq @)+
Vcl(Q) + \70(@, q), where the subscripts refer to the quan-
tum, classical and coupling terms in the potential energy.
The evolution of any dynamical observable Bis given by the
Heisenberg equation,
dB i . 4

— = —[H, B].

dt h

In order to focus on the limit in which the particles with mass
M, with M >> m, are treated classically, it is convenient
to perform a partial Wigner transform with respect to the
classical degree of freedom O defined as:

1
(Qmh)3N/2

where X = (R, P) and R is the coordinate representation of
the operator Q Note that Ew (X) is still an operator in the
quantum subspace. In the limit in which the masses of the
bath (classical) particles are much larger than the quantum
particle masses, a small parameter € = (m/M)'/?> may be
defined and used to perturbatively order terms [8] in the equa-
tions of motion for a partially Wigner transformed dynamical
observable éw (X). If terms up to first order in € are retained
in the full equation of motion, a Liouville equation for the
mixed quantum-classical system is obtained [8]:

13)

B, (X) = fdzef”'z/h <R —z/z}é|R+z/2>,

dB,(X,1) i[ﬁ B
dr Th
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where the Poisson bracket notation in Eq. (14) signifies
. 9H, 9B, 0H, 0B
[A,, B, ) = S0 e - 200 220 (15)
oR OJP aP OR

and the partial Wigner transform of the Hamiltonian is

2 ~D 2
A,(X) = 2 + f—m + V(R = - +hu(X). (16)

Equation (14) is solved by representing the quantum opera-
tors of the subsystem in a complete basis set. One common,
and convenient, choice of basis set is the set qf “adiabatic”
states \a(R)) which diagonalize the operator /,, defined in
Eq. (16):

hw(R) 2 (R)) = Eq(R)[(R)) . an

Note that due to the parametric dependence of the operator

A

hy, onR, the basis set is R dependent. Taking matrix elements

of Eq. (14), one obtains [8] the equ ation of motion for the
matrix element B (¢)

dB (¢ i
?1:() = iLopapBy" (1), (18)
where is Liouville superoperator i Ly /g is given by
. . P 9
iLapap = i0apdaaSpp + 57+ o bawdpp
P
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with w(R) = (E4(R) — Eg)/h. In Eq. (19), quantum state
couplings arise through the off-diagonal matrix terms of the
non-adiabatic coupling matrix d, given by

0
dye ={aR) |—=|cd'(R)), 20
<a( ) R o' ( )> (20)
and the off-diagonal “force”
) 0
F* = —(a(R) [——|d'(R) ). 21
w <a( ) IR o' ( )> (21

The diagonal elements of the force matrix are the Hellmann—
Feynman forces

o _ _ dE4(R)

w 8R ’
and the off-diagonal elements can be expressed [8] in terms
of the non-adiabatic coupling matrix d. Equation (18) can be
conveniently written using supermatix notation in which all
matrix elements B are represented in a single supervector
Bl with p representing the pair (a, B) as

(22)

dBL() ..,
0L LB (), (23)

and formally solved to obtain

B (1) = (e"ﬁ’)w B’ (0). (24)

Equation (24) can be used as a starting point for exact solu-
tions of the mixed quantum-classical equations of motion in
the adiabatic basis. For systems which retain characteristics
of the adiabatic ground state dynamics and involve only a
small number of adiabatic energy surfaces and forces, the
matrix equation can be truncated to include only a few states.
For such weakly non-adiabatic systems, the matrix indices p
run over a small set of indices, resulting in a tractable system
of equations.

Now returning our attention to the expression for the rate
constant in Eq. (11), we see that one must evaluate the quan-
tum-classical limit of the Kubo transformed correlation func-
tion involving the progress variable x and its time deriva-
tive. Recently, Sergi and Kapral [43] analyzed the quantum-
classical limit of arbitrary quantum correlation functions and
demonstrated that in this limit the general Kubo transformed
correlation function in Eq. (9) reduces to

Cap(t; ) = Z/XmdXz B (X1, 1/2) AV (X2, —1/2)
n,v

xWH (X1, X3 B),
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where X and X, are the classical phase space coordinates of
the bath, and W#" is a “spectral density function”. In the high
temperature, classical bath limit, one finds that the diagonal
elements of the spectral density are essentially the canonical
probability density with the appropriate energy, and, more
generally [43],

—B[P22M+E, RD)]

W X,, Xy B) = G I d® (R))
X 8al oy 8y 6 (X1 — X2),  (25)
where
eﬁ[Eaz(Rl)—Eal ®R)] _ 1
D" (Ry) = (26)

B[Eaw,(Ry) — Eq,(Ry)]’

vy, is the dimension of the classical subsystem and Z is the
partition function

1 :
7, = dX —B[ P /2M+Ea(R1)]‘
¢~ 2rn)" ; / '

Applying this result to the rate constant, we obtain

©2))

k=Y / 4X,dXs xls (X1 7°/2) 7y (X, 2 /2)
v

xWH (X1, X5 B),

which reveals that the rate constant can be calculated by first
drawing initial phase points X; and X, for the spectral den-
sity function and then propagating the partially Wigner-trans-
formed functions xw and yw forward and backward in time
up to half the intermediate time t*.

2.1 Evolution schemes
2.1.1 Monte carlo sampling of non-adiabatic transitions

Although the time evolution in Eq. (24) can be evaluated by
brute force diagonalization techniques for systems with few
classical degrees of freedom, larger systems require some-
what more sophisticated approaches. A number of methods
of tackling the numerical solution of (24) are potentially fea-
sible. One possiblity is to separate the Liouville supermatrix
operator i £ into diagonal i £ and off-diagonal i £¢ compo-
nents. Based on symmetries of the superoperator matrices, it
can be shown that each component of the supermatrix oper-
ator has purely imaginary eigenvalues, so that the Trotter
product formula

icQ: iccls

) N;
o 0 _iC‘[z _ Lt —
e (LIHLO (e e Nioe 2N ) + O(N7?)

may be applied to approximate propagation over the total
time interval as propagation over N, short time segments of
duration 8¢, with t = N,ét:

Bw(t) — eiﬂdst/zMad(St)eiﬁd(?vl/2

- E M 4 (810 B, (0), (28)

with the off-diagonal matrix M,,(5t) given by
Ml 0 = (£°)
wv

The “transition” matrix M, can be explicitly evaluated at
any point in classical phase space (X) by diagonalizing i L€

M, (81) = Y S, (RS- L(R), (30)
Qi

(29

where |/1) are the eigenvectors of i L2, Q 4 (R) are the corre-
sponding eigenvalues, and S(R) is the unitary matrix which
diagonalizes the i £2 matrix written in the adiabatic basis set.
Provided the system is nearly adiabatic so that the off-diag-
onal elements of the transition matrix are small, one can de-
fine a Monte-Carlo procedure for sampling transitions from
one set of quantum labels (superindex) to another [41]. Once
a transition does occur, the subsequent dynamics evolves
according to the new set of quantum labels. At each moment
a transition is sampled, a weight factor must be calculated to
insure that the transitions are sampled properly. Thus, each
trajectory has a weight factor associated with it that reflects
the entire history of the sampling process. If these weights are
accumulated properly, one is guaranteed that the Trotter-dis-
cretized trajectory is reproduced exactly. Such an approach
was demonstrated in Ref. [41] on a model proton transfer sys-
tem. The “transition matrix” M, is not a transition matrix
in the proper sense in that it is not always real, positive with
row sums equal to unity. This fact results in a wide distri-
bution of weight factors and leads to numerical instabilities
and slow convergence of the Monte-Carlo procedure at long
times. Although these difficulties limit the applicability of
the method for the calculation of the long time dynamics of
the system, the method is useful for the short to intermediate
time trajectories required in the calculation of rate constants.

2.1.2 Multithreads approach

Averages of dynamical variables over densities (typically
probability densities) as expressed in Eq. (11) are commonly
performed in analytically untractable systems by averaging
a finite number trajectories starting from initial coordinates
selected to represent the density. The initial coordinates are
generally taken as either weighted points on a grid for low-
dimensional systems or as randomly drawn points with a
probability determined by the density using Monte-Carlo or
other methods. In such cases, a time correlation function
(AB(t)) can be approximated as

(AB(1)) = / dX p(X)AX) BX(1))

= f dX [e (p(X)AX))] BX)

L
~ @ Y[ omsx - Xi] B0, Gy

i=1

where i L is the classical Liouville operator, W; is the “weight”
of the initial phase point X; = (R;, P;), and L is the number
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of initial points sampled from the density p (X) A (X). The sta-
tistical properties of the average are typically monitored as a
function of of the initial points L which is increased until the
desired level of statistical uncertainty is reached. Provided
the density and the dynamical variable are smooth functions
of their phase space arguments R and P at all times, L is gen-
erally found to be a relatively modest number (i.e. not prohib-
itivly large) even for large systems. An implicit assumption
in this approach is the existence of “shadow” orbits [44] in
which trajectories generated by approximate numerical meth-
ods track true trajectories. Although this shadowing property
has not been proven for any complicated dynamical systems,
it is generally considered to hold for real systems [45].

A similar philosophy can be applied for the mixed quan-
tum-classical systems as well. Based on the success of apply-
ing trajectory methods to problems in classical statistical
mechanics, it is interesting to consider to what extent a trajec-
tory approach based on finite representations of phase space
integrals is useful in the context of mixed quantum-classical
dynamics. To pursue this line, suppose that the partial Wig-
ner-transform of the an arbitrary operator is represented by
the finite phase space matrix density

L
B,(X)=>" W;8(X-X)),
j=1

(32)

where W is a matrix representing the quantum character
of the operator. The matrix W is weighted according to the
phase space arguments for each point or “thread”. The util-
ity of the discretization approach depends on the accuracy
of representing any observable of physical interest by a finite
and manageable number of matrices located at discrete points
in classical phase space.

We now turn our attention to examining the nature of the
action of the Trotter-factorized propagator on the discrete
representation of an arbitrary dynamical variable expressed
as in Eq. (32). The dynamics effectively consists of sequen-
tial short time propagation steps in which positions, momenta
and quantum rotation of indices occurs. The Liouville (super)

operator i L in Eq. (19) can be written in the abstract form

il =il%+ilP +ilR, (33)
where

iL2B,(X) = % [Vw(R), Bw(X)] : (34)
iL®B,(X) = % - VR B, (X), (35)
iL"B,(X) = %(VPBw(X) F+F. VpBw(X)), (36)

where F(R) = — Vg \7w (R) is the “force” operator and Vw R)
is the partial Wigner transform of the full interation potential
v ( Q, q).In Egs. (34-36), and below, the inner product A - B
denotes ZlNzl A; - B,.

First, the operator i L2 does not involve derivatives with
respect to the classical coordinates and therefore operates

only on the quantum subspace of the dynamical variable. In
super-vector notation, we therefore obtain

L
—i,CQ(Yt) v
e WX - X
() ; X - X))

L
=Y WHGENSX - X)), (37)

j=1

where W’f (6t) is easily evaluated by transforming to and
from the basis in which the superoperator i £€ is diagonal.
The operation of the spatial operator exp{—i LRt} shifts the
spatial location of the jth thread from position R; to R; +
P;8t/m. The action of the momentum propagator i £” on
the dynamical variable is somewhat more complicated due
to the off-diagonal forces. Using the transformation matrices
introduced in Eq. (30) to diagonalize the off-diagonal com-
ponent of i £, the momentum propagation step of a particular
component P can be written as

L
(e—fﬁ”fS’) > WIsR — RSP —P))
wig
L
=) "SR WTSR —R;) 8 — PV (6r)),  (38)
j=1

where P{7 (81) = (Py,.... Peoy, Po + F/8t,..., Py) and
Wk = Se 1(R) - W. Again, note that, in general, each com-
ponent WY of the super-vector W evolves according to a
different force, F'V. If the effective dimension of the quantum

subspace is d, so that the super-vector W is a D-dimensional
column vector, where D = d, * (d; + 1)/2, which can be
decomposed as follows:

wi wy 0 0
~ wy 0 w»y 0
w=|."|=]. |+]. |++

wp 0 0 Wp

=X +Xp+---+Xp. (39)

The matrix product S (R) WF in Eq. (38) implies that ev-
ery thread may be written as a linear combination of D
new threads with a super-vector Sy (R)f(,-, where each of
the threads has different P, arguments. From these consider-
ations, one may interpret the consequence of the off-diagonal
nature of the momentum propagator as leading to the branch-
ing of one thread into D new threads along each of the 3N
momentum degrees of freedom. Hence, the total number of
threads after a single momentum propagation step along a
particular degree of freedom increases by a factor of D from
the current number L to D x L. Clearly the number of threads
grows exponentially with propagation timestep and with the
number of non-commuting force matrices.

One can thus summarize the propagation scheme as fol-
lows: for each time step, the spatial coordinates are updated
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according to the current momenta after which the transforma-
tion supermatrices S (R) are constructed and the momenta
Py are updated in sequential fashion. This is carried out by
transforming the super-vector W for each of the threads into
the appropriate force representation in which the momen-
tum propagator of Py is diagonal. D threads are created from
each old thread out of the individual elements of W and the
momentum argument for the phase point for each of them is
propagated with the diagonal forces for that element. After
propagation, all threads are transformed back into the orig-
inal representation and the process is repeated. Following
the propagation of all momenta, the super-vectors undergo
a quantum rotation as described in Eq. (37). On the other
hand, only L threads should be sufficient to describe to rep-
resent the dynamical variable accurately. Hence, from a prac-
tical point of view, since the function the threads represent
is localized in finite regions of phase space and relatively
smooth by assumption, many of the threads generated by the
off-diagonal nature of the forces involved in the momentum
propagation steps are redundant. It is therefore desirable to
selectively prune the large number of new threads created by
the propagation procedure to retain only those threads which
are necessary to represent the dynamical variable well.

The central idea in the “multithreads” algorithm is to com-
bine threads which approach one another in classical phase
space in a manner consistent with conservation principles.
The utility of the combination principle relies on the notion
that if two threads approach one another in a region in which
the dynamical variable is smooth, one thread is likely to be
redundant so that the two adjacent threads can be combined
into a single thread. In the simplest implementation of the
method, all nearest thread pairs are searched for and then
as many pairs of threads are combined as is necessary to
keep the total number of threads at specific levels determined
by issues such as the continuity of expectation values (such
as populations or average trajectories) and energy conserva-
tion. Under these rules, the trajectories (threads) which are
generated interact in a simple fashion, in contrast to most
methods which use classical trajectories to describe quantum
dynamics.

The multithreads algorithm has been applied to model
proton transfer processes [41], on model two-level systems
coupled to a classical coordinate [46] devised specifically
to test particular quantum scattering features [47], as well as
model systems [48,49] in which multiple classical degrees of
freedom couple explicitly to a quantum subsystem [50]. For
all models, the multithreads algorithm yields results which
show excellent agreement for all quantities calculated at a
relatively modest cost involving a manageable number of
threads. The quality of the results obtained is insensitive to
the order in which Trotter decomposition of the various com-
ponents of the mixed quantum-classical Liouville operator is
carried out.

In spite of these successes, a number of issues remain to
be addressed concerning the general applicability of the prop-
agation scheme. Foremost among these is to assess the range
of validity of the multithreads algorithm so that some idea of
what specific conditions must be met for such an approach

to be fruitful. Given the uncontrolled nature in which the
thread pruning occurs, it is difficult to make direct theoretical
estimations of such limits. Nonetheless, either algorithm out-
lined here should be adequate to propagate the mixed quan-
tum-classical systems for the short times required to provide
estimates of the rate constant for chemical processes.

3 Adiabatic limit and transition state theory

In amixed quantum-classical system, transitions among states
in the quantum subsystem result from the nonadiabatic cou-
pling matrix d defined in Eq. (20). In many systems, the
matrix d is small and can be neglected. A notable exception
to this simplification occurs in systems where the adiabatic
energy surfaces E, (R) are degenerate or nearly-degenerate,
leading to conical intersections and avoided crossings. How-
ever even for these systems the nonadiabatic coupling matrix
is neglible in most arrangements of the system, so that quan-
tum transitions only occur when the system is in a specific
configuration, typically near a so-called “transition state”.
When the nonadiabatic coupling matrix is neglible and
the adiabatic energy states are well separated with respect to
kT, the mixed quantum-classical formalism simplifies into
the adiabatic limit. In this case, the dynamics of the system
in a specific quantum state is completely uncoupled from
all others and the momenta evolve according to the standard
Hellmann-Feynman forces for that state. Furthermore, the
spectral density function given in the high temperature limit
in Eq. (25) is diagonal in quantum indices and phase space
argurments, and assumes the standard canonical form

weeia (X, X,; B)
e~ BPI/2M+EsRD]

Qrh)" Zg
X(Sai,az ‘saé,al 5011,0 5012,0 8(X1 - XZ)»
= fe(Xy) (40)

where Eg(R)) is the ground adiabatic energy. Under these
conditions, one may simplify the expression for the rate con-
stant to

K@) = (xx @) xx0™", (41

where (- - - ) denotes the average with respect to the canonical
equilibrium probability density f. with an energy given by
the sum of the kinetic energy and the potential energy of the
ground state adiabatic surface. In Eq. (41), the time evolu-
tion is governed by the standard classical Liouville operator
with the forces given by the Helmann—Feynman forces in the
ground adiabatic state F(R) = —9 Ey(R)/0R.

Within the context of the chemical kinetics developed
here, it has implicitly been assumed that the phase space has
at least two domains of attraction in which the system spends
long periods of time with rare and rapid transitions among
them. To apply the formalism outlined here, one must define
a reaction coordinate £ (R) of low dimensionality that char-
acterizes transitions from one basin to another. Viewed in
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isolation, the dynamics of the reaction coordinate appears
stochastic in which the other degrees of freedom can either
donate or remove energy. In order to make an escape from
one well, the stochastic variable £(¢) must acquire energy to
become activated toward the barrier and, upon reaching the
barrier top, it must again lose energy to become trapped in
the neighboring well. If one defines the reaction coordinate
so that £ > 0 corresponds to one well (henceforth called a
product state) and £ < 0 corresponds to the other (called a
reactant state), then the progress variable y can be taken to
be [2]

xR) =—(0(EMR)) — (0(EM)))), (42)
where 0 (x) is the Heaviside function. Inserting this definition
into the expression for the rate constant, we obtain [7]

K(t%) = (E8©OEE™)) (xx) ", (43)
which may be rewritten as[51]
K(t*) = krsti (T7) (44)

with a “transition state theory” expression for the rate con-
stant defined to be the T* = O™ limit of the rate constant

krst = (£8(€)05)) (xx) ™" (45)

and a “transmission coefficient” given by

k(t) = w (46)
(gs@®0)

The usefulness of the breakdown in terms of a transition state
rate constant and a transmission coefficient depends on the
accuracy of the assumption that the value of the rate constant
is determined to a large extent by the short time behavior of
K (t). Examination of Eq. (43) indicates that the neglect of
the transmission coefficient (known as transition state theory,
abbreviated as TST) amounts to assuming that when the sys-
tem, initially constrained at the top of the barrier (or in the
transition state) is initially directed to the product (reactant)
state, it remains in that state for all times. Thus TST allows an
upper bound for the rate constant to be computed. The trans-
mission coefficient or recrossing factor can be calculated by
running dynamical trajectories that start at the top of the bar-
rier [52]. The recrossing factor is essentially the fraction of
trajectories which are stabilized after a transient relaxation in
the state to which they were initially directed. For a chemical
process, the TST transition rate in Eq. (45) can be written,
after integration over the momenta, as

1 [dRePP®y(R)5((R))
JdRePE®gER)

where the integral extends over the entire configurational
space of the system, the prefactor for the fraction of averages
is the thermal velocity of a hydrogen atom at temperature
T, and the denominator of the ratio is the partition function
of the reactant. The weighting factor w(R) arises from the
momentum integration, and is given by

9 2
w® = | ";—H <£)

(47)

k =
TST 27Bmy

(4%)

for a one-dimensional reaction coordinate. Note that w(R)
depends on the dimensionless mass ratios m; /m g due to the
prefactorin Eq. (47). In the case where the reaction coordinate
is one of the Cartesian spatial coordinates r; of the system,
w(R) = 1 and the TST transition rate may be written as

2nBm; [°dE e FPE”

where ¢ (§) = —kT log(§(£(x) —&)) is the potential of mean
force. Equation (49) demonstrates that the potential of mean
force is intimately related to the expression for the reaction
rate in the TST approximation. As is evident from Eq. (47),
the calculation of TST rate requires only straightforward con-
figurational averages in a classical system.

kst = (49)

3.1 Correlation-reduction techniques

From a practical point of view an estimator for the fraction
in Eq. (47) is given by

/ dRe PP ®u(R)S(£(R))

. J
=Jj=3, (50)
/ dRePE®g (£ (R)) 2
where
J, ! Z (RH[0 < E(R') < AE] (5D
=— Y w
Y A < <
=710 <R, (52)
Ri
where R; = {ri, 75, ..., r\} are the N spatial coordinates

of the system for configuration i in the Markov chain con-
structed so that states generated are asymptotically distrib-
uted according to P(R) = exp{—BEo(R)}/Z. In the equa-
tions above we have used Iverson’s convention [53] which
consists of placing a Boolean expression in square brackets
and requiring that the result is 1 if the expression is true and
0 if it is false. Note that in Eq. (51), A& should be chosen
to be small enough so that ALE[O < ";‘(Ri) < A£]is a good
approximation of the delta function §(£), but large enough
such that the variance of the estimator J; is not too big in
order to guarantee that there are enough points inside the
interval.

A simulation can give only a confidence interval for the
expected value of an estimator. Usually this is given in terms
of 95% confidence intervals,

(E[J] —2\/\?[11, E[J]+ 24/ Var[J]},

where E [f ] is the estimated value from the simulation. The
variance Var[J] of J depends on the number of indepen-
dent points, or equivalently on the the integrated correlation
time. In general, if J is an estimator of a quantity obtained
using the N configurations which are the output of a Markov

(53)



Quantum effects in ab-initio calculations of rate constants for chemical reactions occuring in the condensed phase 25

Chain after eliminating the burn-in length of the simulation
[54], then

; YVvarlJl 1 1)
El[J] Vip

where n, is the number of independent points in the region
of the barrier top and f is the ratio between the standard error
and the estimated value. Generally speaking, the analysis of
statistical uncertainties as presented here assumes that the
points retained in the simulation are essentially uncorrelat-
ed and distributed normally. In fact, the distribution of val-
ues for any given observable is often not normal and hence
not entirely specified by the mean and variance [55] (see
Ref. [56] for an example in which the data are non-normally
distributed).

The accuracy of the estimation of the classical rate con-
stant kpst obtained from the simulation therefore increases
as the square root of the number of independent points in the
activated region.

The calculation of the rate constant therefore amounts
to generating an appropriately-distributed Markov Chain of
states. However the generation of such a sequence of config-
urations using standard methods, either molecular dynamics
(MD) or Monte Carlo methods (MC), effectively requires the
calculation of the energy of the adiabatic ground state of each
configuration. Given that molecular mechanics potentials are
generally parameterized for stable, non-reactive configura-
tions, the accurate estimation of such energies for chemical
processes in which covalent bonds are broken and formed
often neccesitates the use of computationally demanding ab
initio electronic structure methods, such as density function
theory (DFT). The use of such methods precludes the pos-
sibility of generating very long sequences of configurations,
and it is therefore essential to consider means of maximizing
the number of independent points 7, in the chain of states.

Iftimie et al. [57] proposed a method to decrease the cor-
relation of output data using an importance function method
[54]. The basic idea of importance function method consists
of using an auxiliary density function g(x) from which one
can easily sample points according to their correct weight yet
is similar to the target density function f(x). In the context
of Markov chain Monte Carlo simulations, this means that
if the actual state of the chain is x;, the proposed point x
drawn from the distribution g(x) should be accepted with the
probability

N {1 J(xy) g(xi) }

Ce(xp) f(xi)

to ensure that the configurations in the Markov chain are

(55)

asymptotically distributed according to f (x). When trial states

Xy are drawn from a distribution very similar to the tar-
get distribution, nearly all the points will be accepted and
the successive configurations will be essentially uncorrelat-
ed provided that the trial states xr is independent of x;. For
complicated importance functions g(x), the simplest means
of sampling new trial configurations is to utilize an auxiliary
Markov chain which has limiting distribution g(x). Provided

the trial states are selected as the output of sufficiently long
intervals on the auxiliary Markov chain, each proposed state
for the target Markov chain is essentially independent of the
current state. In an ab-initio MC simulation, drawing trial
configurations from a distribution based upon a molecular
mechanics potential, or any other efficient means of estimat-
ing the potential energy, using a supplementary Markov chain
will increase the total cpu time by a very small factor since
calculating the classical energy of a configuration is several
orders of magnitude faster than the same ab-initio calculation.

In this approach, called the molecular mechanics based
importance sampling method (MMBIF) [57], each trial con-
figuration is obtained as the last state in a series of molecular
mechanical based updates starting from the current configu-
ration in the ab initio simulation. The proposed configurations
are then accepted or rejected in the ab initio chain according
to the usual Metropolis—Hastings algorithm [57]. If the previ-
ous and new trial configurations in the ab initio MC chain are
denoted by X,q and Xy, respectively, the proposed state is
accepted with the probability min{1, exp(—BAAE)}, where
AAE is defined to be

AAE = (EP" Xpew) — E™ (Xnew))

—(EP (%o1g) — E™" (Xota))+ (56)
where EPFT(x) and E°!(x) are the potential energies of con-
figuration x calculated by ab initio methods and the molec-
ular mechanical potential, respectively (see Fig. (1) for a
schematic of the algorithm). It is straightforward to show
that this acceptance criterion guarantees that the ab initio
Markov chain has the correct limiting Boltzmann distribu-
tion [57], regardless of the number of auxiliary updates used
to generate the proposed configuration.

The MMBIF approach has been applied to study the po-
tential of mean force for a system composed of formic acid
and water [57] as well as to study the concerted proton trans-
fer that takes place between acetic acid and methanol in a
solution of tetrahydrofuran [58]. In both studies the utiliza-
tion of the molecular-mechanics-based importance function
decreases the correlation time of the ab-initio MC calcula-
tion by orders of magnitude. Simulations performed with-
out importance sampling require much more computational
time to obtain comparable levels of accuracy. Furthermore,

Updates use molecular
mechanics potential ¥V,

Z, Y=Z,

ot L 4 U 4

i' Accepted ?1{

X, Xu=Y

S, 5
Fig. 1 Schematic of the MMBIF sampling method
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the MC importance sampling method enables a thorough
sampling of the relevant configurational space which allows
accurate estimates of transition state theory rate constants to
be obtained from relatively short simulations.

In addition, several critical performance issues of the ap-
proach, such as the efficiency of the method in the event
of moderate agreement of the guiding potential and the ab
initio energy, have been analyzed [57]. It has been demon-
strated that separating the variables to be updated in a molec-
ular mechanics MC step into several groups will improve
the mobility of the simulation. If possible, one group should
contain variables which are strongly correlated. In general,
separating the variables into groups should permit efficient
sampling of configurational space when the distribution of
states which are poorly estimated by the guiding potential is
relatively random, even for molecular mechanics potentials
which overestimate or underestimate the energy by a few k7.

If long periods of MC rejections still exist, this is an indi-
cation that there is an important disagreement between the
molecular mechanics and the ab-initio density of states which
is very likely localized in some region of the state space. A
remedy for this problem is to combine the importance sam-
pling described above with another method, which generates
a different Markov chain dynamics. For example, configura-
tions proposed with a different molecular mechanics poten-
tial, including umbrella sampling potentials, could be used
to move the simulation away from the problematic region
of state space. Another means to avoid becoming trapped in
phase space would be to use ab-initio Metropolis updates
and the usual Metropolis criteria for acceptance. An equally
good solution is to combine importance sampling with ab-ini-
tio MD when accurate calculation of the forces is possible. It
has been demonstrated [57] that these two simple techniques
are enough to obtain integrated times which are at most one
order of magnitude bigger than in the case where a very good
molecular mechanics potential is available.

4 Kinetic isotope effects and reaction mechanism

The concept of reaction mechanism plays a major role in
chemistry and represents a synthesis of our understanding
of the way in which different topological changes in the
bonding structure of a reactant or product are correlated as
the reaction proceeds. To date, most experimental investiga-
tions of complex reaction mechanisms taking place in lig-
uid environments are still inferred from isotope and solvent
(medium) effects on the reaction rate [S9-61]. Consequently,
the interpretation of the experimental results as well as the
reaction mechanisms inferred are often controversial. Com-
puter studies can be useful as a complement to experimental
data in cases where experiments alone cannot provide a defin-
itive picture of the mechanism of the chemical process. It is
therefore desirable to develop systematic computational ap-
proaches to carefully examine the relation between isotope
effects and reaction mechanism in condensed phase systems.

The study of secondary isotope effects in model reac-
tions is also important in understanding the conditions under

which mixed quantum-classical schemes can be applied to
simplify the description of a complicated quantum problem.
Since classical behavior is obtained for any atom whose mass
is sufficiently large, computational studies of kinetic isotope
effects provide a powerful means of analyzing the conditions
in which an increase in the nuclear mass of an atom does not
significantly alter the overall kinetics. Such a condition is a
minimal requirement for the classical treatment of the atom.
Intuitively, one might anticipate that primary atoms explic-
itly involved in the bond-forming and bond-breaking events
should be treated within a quantum mechanical framework.
However, there is less consensus on whether or not second-
ary atoms not directly involved in chemical events must be
treated in a quantum mechanical fashion. Fictitious isotopic
substitution can hence be used to explore the conditions in
which the quantum behavior of collective motions of second-
ary atoms must be considered.

The path integral formalism of quantum mechanics pro-
vides a practical route for computing kinetic isotope effects
via a quantum analog of transition state theory for quantum
activated processes [65,66]. In this formalism, quantum par-
ticles are mapped onto closed paths r(¢) in imaginary time ¢
with 0 <t < Bh [63]. In practical implementations, discret-
izations of the closed paths leads to an isomorphism between
the path integral formalism and a system of interacting ring
polymers with P beads governed by the effective potential
Eup — Z Pm;(kpT)?

(p)
= 27’12 Z(
(p)
+F Zl Eo(r}” -
p:

where N is the number of atoms, m; the mass of atom i,
and r(p ) is the position of bead p of atom i. In Eq. (57),
the closure of the Feynman path is imposed by periodic

boundary conditions r(’) = rfPﬂ), and Eo(ry, ... ,ry) is
the ground state potentlal energy calculated either by ab
initio methods or by a molecular mechanics potential. The
first term on the right-hand side of Eq. (57) describes har-
monic interactions between the beads and is related to the
average quantum kinetic energy. In the limit of an infinite
number of beads, the discrete representation of the paths
becomes exact and averages over the canonical Boltzmann
distribution exp(— Egr/ kT)/ Q yield the full quantum canon-
ical ensemble averages. In practice, however, only approxi-
mately P = 20 beads are required for each nucleus to obtain
converged quantum averages for many systems. The classi-
cal limit is recovered as the masses m; — o0, in which case
the polymer representing the quantum particle collapses onto
the center-of-mass or centroid of the ring polymer

1 P
= _ 2: (p)
ri—F ro.
p=1

The path integral approach has been utilized to formulate an
approximate theory of quantum activated processes using the
notion that the reaction rate is governed by the activation free

(p+l) 2
;")

(57)
(P))

(58)
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energy for the centroid reaction coordinate [65,66] and that
dynamical recrossing is unimportant for good choices of the
reaction coordinate.

The application of the MMBIF method in the context of
path-integral simulations consists of using the effective po-
tential energies EDF' and E" calculated via ab initio and
molecular mechanical potentials, where EQFT and E™" rep-
resent the effective potential energy in Eq. (57) with E(ry,

., ry) defined by EPFT and E™", respectively. Since the
acceptance criterion used in the MMBIF method [see Eq. (56)]
involves only the difference between the effective potential
energies AA E, it is evident the relevant energy differences
for the MC procedure are independent of the kinetic energy
terms, and

P
1
AAEeff — ; Z AE(r(p) (p) )

Lnew " TN new
p=1

P
1
— 5 D AEC k). (59)
p=1

where AE(” ...rP) = EPFT(\P) ... pP)y — prom(p(?

. -r;\f)). The auxiliary classical Markov chain used to pro-

pose MC updates in the MMBIF procedure allows for rapid
equilibration of the discretized paths representing nuclei. As a
consequence, the polymer bead conformations are essentially
statistically independent in successive proposals. This is in
sharp contrast to dynamical methods of sampling the effective
distribution in which sophisticated staging and thermostating
methods are necessary to equilibrate the paths [64]. Unfortu-
nately the calculation of the ab initio effective potential EDF "
is computationally demanding, since P energy calculations
must be carried out for each path conformation.

InRef. [67], an extended version of the MMBIF sampling
method was applied in the context of imaginary time path
integral simulations of the tautomerization proton-transfer
reaction in malonaldehyde solvated by an aprotic, nonpolar
solvent (see Fig. 2).

It was demonstrated that ad hoc bond-energy bond-order
relations derived from bond evolution theory [68,69] com-
bined with Pauling’s valence bond ideas [70] can be used to
construct a molecular mechanics guiding potential for the ab
initio simulation that improves the statistics by three orders
of magnitude [67]. There are several advantages in construct-

H
/" H
?4 IC|)7
3. _Ce
He \(72/ Hg
Hy
Reactant Transition State

Fig. 2 The proton transfer tautomerization reaction in the enol form of
malonaldehyde

ing a classical potential for a reactive system in this manner.
First, it provides a simple way to enforce the chemically intu-
itive idea that the reaction path is determined primarily by the
atoms involved in the bond-breaking and bond-forming pro-
cesses. This hypothesis is based on experimental evidence
which suggests that primary kinetic isotope effects, which
involve isotopic substitution of atoms directly involved in
chemical bond breaking/forming processes, are generally or-
ders of magnitude [71] larger than secondary kinetic iso-
tope effects due to substitutions of other atoms. It is much
more difficult to implement such a constraint in other ap-
proaches, such as the commonly-applied empirical valence
bond method [72], which necessitates a special functional
form for the off-diagonal coupling. Second, useful built-in
empirical chemical concepts such as the partial bond order
can easily lead to interpretations of the reaction mechanism.
In Ref. [56] and [73], two different bond evolution theory
molecular (BET) mechanical potentials were constructed to
study how the quality of a molecular mechanics description
of the reactive energy surface influences the accuracy of pre-
dicted kinetic isotope effects. The potentials were constructed
as the sum of two terms. The first term consisted of a double-
well potential depending on a control parameter & which
is a function of only the coordinates of the atoms directly
involved in the bond-breaking and bond-forming processes

_do,ny, — do,H,

&1 = (60)

do,o,

This term was identical in the two molecular mechanics poten-
tials. The second term consisted of a sum of harmonic poten-
tials taken to depend parametrically on & The second type
of potentials describe the evolution of the bond, bond angle
and dihedral motions during the reaction. The difference be-
tween the two molecular mechanics potentials consisted of
the functional form of the parametrical dependence of the
carbonylic and enolic bond lengths on £;. In the first poten-
tial, BET1, the bond lengths varied linearly with &, while
for the second potential, BET2, a tangent hyperbolic vari-
ation was utilized. For these model systems, as well as the
ab initio system, calculations of the indicator

le’IZC kEH,IZC

r = log / log (61)

1 H,]’C k3 H,hC

were carried out [56]. The magnitude of r is often used in
the physical organic chemistry literature as a measure of the
extent to which secondary atoms are involved in tunneling.
The value r = 1 corresponds to the rule of geometric mean,
which has been empirically found to be valid [74—78] when
reaction rates are calculated using a simple semi-classical
transition state theory [79,80] in which tunneling effects are
neglected but zero-point energies are incorporated. However,
the results of the centroid simulations, which consider tun-
neling effects in an approximate fashion, predicts different
tunneling effects for the BET2 and the BET1 or ab initio sys-
tems. In particular, it was found that r is significantly larger
than the value predicted by the rule of geometric mean for
the BET?2 system, yielding a value of r = 2.6 &= 0.6 for the
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&, reaction coordinate. In addition, calculation of semi-clas-
sical transition state theory reaction rates using a harmonic
description of the potential energy surface in the neighbor-
hood of the minimum energy and transition state configu-
rations show that the breakdown of the rule of geometric
mean in the BET2 model cannot be attributed to zero point
energy effects. Hence, it appears that for the proton transfer
process in the BET2 system, the breakdown of the rule of
geometric mean is a signature of important secondary atom
tunneling effects. In contrast to the results obtained using the
BET?2 potential energy surface, no breakdown of the rule of
geometric mean is observed for the proton transfer reaction
calculations using the BET1 or the ab initio DFT potential
energy surfaces (i.e. = 1.0 within statistical uncertainties).
Indeed, it appears that no statistically significant secondary
isotope effects are evident in the BET1 and ab initio DFT
systems, in accordance with chemical intuition.

The molecular mechanics potential energy surfaces BET1
and BET?2 differ only in the functional form used for the
variation of the bond lengths C304 and C¢O; (see Fig. 2
for labelling of atoms) with &; along the path of shallow-
est ascent. This difference translates into slight alterations in
the reaction mechanism due to differing degrees of synchro-
nization of the two most important events in the reaction,
the transfer of the proton and the response of the backbone
to the motion of the proton. The degree of synchronization
between the motions of the transferring proton and the car-
bon backbone atoms can be visualized by examining the path
through the configurational space of the system which con-
tributes the most to the (quantum nuclear) free energy of
the reactive process, hereafter called the path of maximum
reaction probability. The projection of the path of maximum
reaction probability on the coordinates A and &; for the two
molecular mechanics potential energy surfaces BET1 and
BET?2 have been extracted from the simulation results and
are depicted in Fig. 3. These coordinates are convenient to
analyze since the A coordinate measures the extent of car-
bon backbone rearrangement while & gauges the degree of
proton displacement. The paths shown in Fig. 3 were con-
structed by finding the most probable value of A for a given
value of & in the simulations after reweighting the data to
compensate for the umbrella potental. These data therefore
provide a clear indication of the correlation between struc-
tural rearrangements of the backbone and the motion of the
proton. The results in Fig. 3 show that the proton transfer and
backbone reorganization events proceed in a concerted fash-
ion at all times for the BET1 system, whereas in the BET2
system the reaction initiates with significant proton motion,
while the carbon backbone reorganizes substantially only in
the transition state region.

The differing degree of carbon backbone motion in the
neighborhood of the transition state observed in the simula-
tions of the BET1 and BET2 systems is the likely cause of
the difference in the magnitude of secondary atom tunneling
effects. In fact, the proton transfer process in the malonalde-
hyde system can be effectively mapped into a simple two-
dimensional model which qualitatively reproduces the heavy
atom tunneling behavior as the path of maximum reaction

probability changes. The projection of the path of maximum
reaction probability in the parameter space spanned by A and
& for the ab initio DFT potential reveals that the margin-
ally significant secondary isotope effects obtained with the
ab initio potential can be interpreted by means of a reac-
tion mechanism more similar to the BET1 than to the BET2
system.

4.1 Implications and outlook

Two important theoretical questions have been addressed in
the study of kinetic isotope effects in a simple model sys-
tem. First, it has been demonstrated that the use of molecu-
lar mechanics potentials to study secondary kinetic isotope
effects can result in artifacts unless special care is exercised
in designing the molecular mechanics potential. In particu-
lar, it has been demonstrated that an unphysical molecular
mechanics potential with an incorrect projection of the path
of steepest descent on degrees of freedom involving second-
ary atom motion can result in erroneous predictions of sec-
ondary atom tunneling effects. One easy means to address
this problem is to ensure that molecular mechanics poten-
tials designed by fitting parameters from accurate electronic
structure potentials correctly describe not only the energetics
and structure of the minimum energy and transition state con-
figurations, but also their eigenfrequencies and eigenmodes.
In particular the projection of the eigenmode corresponding
to the “imaginary frequency” at the transition state configura-
tion on different primary and secondary atom motions should
be carefully investigated.

The second theoretical question addressed concerns the
partitioning of the nuclear degrees of freedom of a reactive
system into quantum and classical components. Although it
is generally believed that primary atoms directly involved
in the bond-breaking and bond-forming processes should be
treated quantum-mechanically, one might expect that treating
heavy secondary atoms in a classical fashion would introduce
only negligible systematic errors in the calculation of reac-
tion rates. However this is clearly not the case when collective
motions of secondary atoms play a critical role in the reac-
tion mechanism. The BET2 system, where quantization of the
nuclear degrees of freedom of the carbon atoms increased the
tautomerization rate by a factor of 5, is an example of such a
scenario. For systems exhibiting important heavy atom tun-
neling, the neglect of the quantum dispersion of the heavy
nuclei can lead to errors in the calculation of rate constants
of up to a factor of 10 and may well be the most significant
source of systematic error in the calculation of the rate con-
stant. Although significant secondary atom nuclear quantum
effects were not observed in the model proton transfer reac-
tion studied here when the ab initio DFT potential was used,
secondary atom tunneling is likely to be important in real pro-
cesses in which the reaction mechanism involves consider-
able motion of secondary atoms in the transition state region
[81,82]. It is therefore important to treat the quantum nuclear
effects of all secondary atoms which move cooperatively as
a chemical process proceeds. These conclusions, of course,
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Fig. 3 A plot of the maximum density of points in the (&;, 1) plane for the BET1 (solid line) and BET2 (dashed line) simulations. The maximum
density of points for the ab initio simulation (not shown) follows the same profile as that of the BET1 simulation. & is the reaction coordinate
defined in Eq. (60), and A = dc,0, — dc,0, is the difference between the carbonyl and enolic bond lengths. &,0q and Apoq represent the &; and A
values calculated for the product configurations

have important implications for the dynamics discussed in
the Sect. 2 as well, and indicates that it is not simply the
mass ratio of light and heavy nuclei that determines whether
they behave classically or not.
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